
Learning to Optimize

Wotao Yin

UCLA Math and Alibaba US Damo Academy

East Coast Optimization Meeting 2021

Co-authors, paper, and code

▷ Tianlong Chen, Xiaohan Chen, Wuyang Chen,
Zhangyang Wang (UT Austin)

▷ Howard Heaton (UCLA)

▷ Jialin Liu (Alibaba US)

▷ Learning to Optimize: A Primer and A Benchmark.
arXiv:2103.12828

▷ Code: https://github.com/VITA-Group/Open-L2O

2

https://arxiv.org/abs/2103.12828
https://github.com/VITA-Group/Open-L2O

1.
Why and how

to learn to optimize

3

Machine learning vs Optimization

Answers are given as
existing data or experience

ML learns from data and
experience to give
answers in the future

No answer is given; but
we know how to evaluate
how answers are.

OPT will find answers
with best evaluations

4

L2O uses past optimization experience (i.e., observed
performance) to “optimize better in the future.”

Induction Prescription

5

Classic optimization Learning-to-optimize

Classic vs Learning-to-optimize (L2O)

Classic optimization methods

Methods are typically hand-built from basic
components – GD, CG, Newton steps, LS,
stochastic sampling, and so on – in a
theoretically justified manner.

Most are written in a few lines.

Many come with theories, performance
guarantees, and interpretations.

To solve a problem:

• Recognize its type

• Select an existing method, tune a few
parameters

Learning-to-optimize methods

Methods are developed by training

May lack theory, be difficult to interpret, but
performance improved during training

Can borrow ideas from classic optimization

Training takes time; applying is fast

Can be applied to

• Improve solution speed, but not quality

• Improve solution quality, not nec. speed

6

When shall we consider L2O
▷ Having examples of

good solutions

▷ But it is hard to
formularize them
analytically (e.g., inverse
problems)

▷ Or an accurate
formulation is too
difficult to solve

L2O can help find better
solutions!

▷ Solving similar
optimization problems
repeatedly

▷ The task distribution is
concentrated and can be
represented by examples

L2O can help find a “fast
shortcut” to the solutions!

7

Basic formulation

Consider

▷ GD iteration:

▷ L2O tends to free up parameters and use more information
○ Let include all iterates and gradients so far
○ Use where is parameterized by
○ An example L2O formulation (Andrychowicz et al’NIPS16):

8

model-based vs model-free
▷ 𝑔 has a form of an

existing method or
uses it as a starting
point

▷ L2O searches for the
best values of some
parameters

▷ You may combine this
L2O with classic
methods in various
ways

▷ 𝑔 is based on universal
approximators, e.g.,
multi-layer neural
networks or recurrent
neural networks.

▷ L2O is set to discover
completely new update
rules without referring
to any existing updates
(other than being
iterative)

9

2.
Model-Free L2O
based on RNNs, especially LSTMs

10

RNN and unfolding

11

Wichrowska et al’17; Metz et al’ICML19; Li-Malik’ICLR17; Bello et al’ICC17; Jiang et al’18;

Many model-free L2O uses LSTM

12

Andrychowicz et al’NIPS16; Chen et al’ICML17; Lv-Jiang-Li’17; Cao et al’NeurIPS19; Xiong-Hsieh’20

13

Meta learning

▷ Rough definition: the approach that uses a method to
improve learning algorithm(s), a.k.a. “learning to learn”

▷ Training those algorithms is called “meta training”

▷ Testing those algorithms is called “meta testing”

▷ L2O is not entirely meta learning, and vice versa

14

Challenges: unroll lengths

▷ Long unroll causes high memory cost

▷ Short unroll fails to generalize to more iterations

15

Reinforcement learning (RL)

▷ (Li-Malik’ICLR17) Learns a policy to determine
the update rule; uses training loss reduction
as reward

▷ (Bello et al’ICC17) uses RL to select a sequence
of symbolic elements

16

3.
Model-Based L2O

Plug-n-Play, Unrolling, Safeguarding, etc.

17

Plug-and-Play

▷ Replace a part of a classic method by learned operator

▷ (Venkatakrishnan et al’GlobalSIP13) PnP ADMM:

▷ (Ryu et al’ICML19) guarantees convergence by combining
Lipschitz and contraction properties

18

Example: Super resolution

19(Chen-Wang-Elgendy’17)

Example: Compressed-sensing MRI

20(Ryu et al’ICML19)

21(Ryu et al’ICML19)

Unrolling example: LASSO/ISTA

22

Unrolling

▷ Truncate an iterative algorithm, and view as a feedforward neural network that can
be end-to-end trained

▷ Often no need to learn all parameters (Chen et. al. NeurIPS’18 & Liu et. al. ICLR’19)

▷ Popular and successful in inverse problems, PDEs, and graphical models
23

Challenges

Practice: specific design tied to the problem

Theory: although “model-based”, little theory exists due to black-box
training

○ Capacity: is L2O provably good/better?

○ Trainability: how to train, any guarantee?

○ Generalization: when and what if L2O fails?

○ Interpretability: what L2Os have learned?

24

Safe-guarding

(Heaton et al.20) L2O convergence can be ensured
by incorporating an “energy” E, which is related to
nonmonotone line search.

When L2O fails to decrease the energy, the classic
update 𝑇 will take over in that iteration

25

4.
Benchmarks

26

A few representative test problems

▷ Convex sparse recovery/optimization

▷ Nonconvex Rastrigin function minimization

▷ Training neural networks

27

Sparse optimization

▷ Recover a sparse vector from noisy measurements

▷ 𝐴 Is fixed, but sparse vectors

▷ Without noise, we expect exact recovery

▷ With noise present, we expect approx. recovery

▷ Training loss is squared-L2 to the true signal

28

Learn to recover

29

Learn to solve the LASSO model

30

Rastrigin function

▷ A popular non-convex test function

▷ We generalized it to higher dimenions

▷ Data are sampled from Gaussian

31

Speed and solution quality

32

Neural network training

▷ Can L2O outperform analytic ones?

▷ Generalization to unseen architectures and data?

▷ In-distribution training: MLP with a 20-dim
hidden layer and sigmoid activation; MNIST;
minimize cross-entropy loss; random initial data

▷ Out-of-distribution testing:
○ ReLU instead of Sigmoid
○ Another ConvNet on the MNIST

33

Testing: training performance

34

5.
Uncovered topics

35

▷ Progress of solving MIPs, SATs, etc.

▷ Unrolling second-order (e.g., quasi-Newton) methods

▷ Learn to improve the model or input parameters

▷ Use a classic solver, possibly with parameters, as a layer in a
large network

▷ ……

36

6.
Open questions

37

▷ Lack of training data due to privacy or
proprietary protections

▷ Unbalanced training data

▷ Un-safeguarded L2O methods may fail,
unsuitable for critical scenarios

▷ Difficult to interpret, cannot do “what-if”
analysis

38

Thanks!
Any questions?
You can email us at:

Zhangyang Wang <atlaswang@utexas.edu>

Wotao Yin <wotao.yin@alibaba-inc.com>

39

Credits

Special thanks to all the students / collaborators who
worked with us and released the code:

▷ Tianlong Chen, Xiaohan Chen, Wuyang Chen

▷ Howard Heaton

▷ Jialin Liu

40

