
Learning to Optimize

Wotao Yin

UCLA Math  and  Alibaba US Damo Academy

East Coast Optimization Meeting 2021



Co-authors, paper, and code

▷ Tianlong Chen, Xiaohan Chen, Wuyang Chen, 
Zhangyang Wang (UT Austin)

▷ Howard Heaton (UCLA)

▷ Jialin Liu (Alibaba US)

▷ Learning to Optimize: A Primer and A Benchmark. 
arXiv:2103.12828

▷ Code: https://github.com/VITA-Group/Open-L2O

2

https://arxiv.org/abs/2103.12828
https://github.com/VITA-Group/Open-L2O


1.
Why and how 

to learn to optimize
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Machine learning vs Optimization

Answers are given as 
existing data or experience

ML learns from data and 
experience to give 
answers in the future

No answer is given; but 
we know how to evaluate 
how answers are.

OPT will find answers 
with best evaluations
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L2O uses past optimization experience (i.e., observed 
performance) to “optimize better in the future.”

Induction Prescription
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Classic optimization Learning-to-optimize



Classic vs Learning-to-optimize (L2O)

Classic optimization methods

Methods are typically hand-built from basic 
components – GD, CG, Newton steps, LS,  
stochastic sampling, and so on – in a 
theoretically justified manner.

Most are written in a few lines.

Many come with theories, performance 
guarantees, and interpretations.

To solve a problem:

• Recognize its type

• Select an existing method, tune a few 
parameters

Learning-to-optimize methods

Methods are developed by training

May lack theory, be difficult to interpret, but 
performance improved during training

Can borrow ideas from classic optimization

Training takes time; applying is fast

Can be applied to 

• Improve solution speed, but not quality

• Improve solution quality, not nec. speed
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When shall we consider L2O
▷ Having examples of 

good solutions

▷ But it is hard to 
formularize them 
analytically (e.g., inverse 
problems)

▷ Or an accurate 
formulation is too 
difficult to solve

L2O can help find better 
solutions!

▷ Solving similar 
optimization problems 
repeatedly

▷ The task distribution is 
concentrated and can be 
represented by examples

L2O can help find a “fast 
shortcut” to the solutions!
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Basic formulation

Consider

▷ GD iteration:

▷ L2O tends to free up parameters and use more information
○ Let        include all iterates and gradients so far
○ Use                                                    where      is parameterized by 
○ An example L2O formulation (Andrychowicz et al’NIPS16): 
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model-based  vs   model-free
▷ 𝑔 has a form of an 

existing method or 
uses it as a starting 
point

▷ L2O searches for the 
best values of some 
parameters

▷ You may combine this 
L2O with classic 
methods in various 
ways

▷ 𝑔 is based on universal 
approximators, e.g., 
multi-layer neural 
networks or recurrent 
neural networks.

▷ L2O is set to discover 
completely new update 
rules without referring 
to any existing updates 
(other than being 
iterative)
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2.
Model-Free L2O
based on RNNs, especially LSTMs
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RNN and unfolding
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Wichrowska et al’17; Metz et al’ICML19; Li-Malik’ICLR17; Bello et al’ICC17; Jiang et al’18;



Many model-free L2O uses LSTM
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Andrychowicz et al’NIPS16; Chen et al’ICML17; Lv-Jiang-Li’17; Cao et al’NeurIPS19; Xiong-Hsieh’20
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Meta learning

▷ Rough definition: the approach that uses a method to 
improve learning algorithm(s), a.k.a. “learning to learn”

▷ Training those algorithms is called “meta training”

▷ Testing those algorithms is called “meta testing”

▷ L2O is not entirely meta learning, and vice versa
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Challenges: unroll lengths

▷ Long unroll causes high memory cost

▷ Short unroll fails to generalize to more iterations
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Reinforcement learning (RL)

▷ (Li-Malik’ICLR17) Learns a policy to determine 
the update rule; uses training loss reduction 
as reward

▷ (Bello et al’ICC17) uses RL to select a sequence 
of symbolic elements 
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3.
Model-Based L2O

Plug-n-Play, Unrolling, Safeguarding, etc.
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Plug-and-Play

▷ Replace a part of a classic method by learned operator

▷ (Venkatakrishnan et al’GlobalSIP13) PnP ADMM:

▷ (Ryu et al’ICML19) guarantees convergence by combining 
Lipschitz and contraction properties
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Example: Super resolution

19(Chen-Wang-Elgendy’17)



Example: Compressed-sensing MRI

20(Ryu et al’ICML19)
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Unrolling example: LASSO/ISTA
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Unrolling

▷ Truncate an iterative algorithm, and view as a feedforward neural network that can
be end-to-end trained

▷ Often no need to learn all parameters (Chen et. al. NeurIPS’18 & Liu et. al. ICLR’19)

▷ Popular and successful in inverse problems, PDEs, and graphical models
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Challenges

Practice: specific design tied to the problem

Theory: although “model-based”, little theory exists due to black-box 
training

○ Capacity: is L2O provably good/better?

○ Trainability: how to train, any guarantee?

○ Generalization: when and what if L2O fails?

○ Interpretability: what L2Os have learned?
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Safe-guarding

(Heaton et al.20) L2O convergence can be ensured 
by incorporating an “energy” E, which is related to 
nonmonotone  line search.

When L2O fails to decrease the energy, the classic 
update 𝑇 will take over in that iteration
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4.
Benchmarks
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A few representative test problems

▷ Convex sparse recovery/optimization

▷ Nonconvex Rastrigin function minimization

▷ Training neural networks
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Sparse optimization

▷ Recover a sparse vector from noisy measurements

▷ 𝐴 Is fixed, but sparse vectors 

▷ Without noise, we expect exact recovery

▷ With noise present, we expect approx. recovery

▷ Training loss is squared-L2 to the true signal
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Learn to recover
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Learn to solve the LASSO model
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Rastrigin function

▷ A popular non-convex test function

▷ We generalized it to higher dimenions

▷ Data are sampled from Gaussian
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Speed and solution quality
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Neural network training

▷ Can L2O outperform analytic ones?

▷ Generalization to unseen architectures and data?

▷ In-distribution training: MLP with a 20-dim 
hidden layer and sigmoid activation; MNIST; 
minimize cross-entropy loss; random initial data

▷ Out-of-distribution testing: 
○ ReLU instead of Sigmoid
○ Another ConvNet on the MNIST
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Testing: training performance
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5.
Uncovered topics
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▷ Progress of solving MIPs, SATs, etc.

▷ Unrolling second-order (e.g., quasi-Newton) methods

▷ Learn to improve the model or input parameters

▷ Use a classic solver, possibly with parameters, as a layer in a 
large network

▷ ……
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6.
Open questions
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▷ Lack of training data due to privacy or 
proprietary protections

▷ Unbalanced training data

▷ Un-safeguarded L2O methods may fail, 
unsuitable for critical scenarios

▷ Difficult to interpret, cannot do “what-if” 
analysis
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Thanks!
Any questions?
You can email us at:

Zhangyang Wang <atlaswang@utexas.edu>

Wotao Yin <wotao.yin@alibaba-inc.com>
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